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Challenges:
• Component-level damage affects system-level dynamics 
• Fast re-analysis is needed to reduce computational cost of 

large-scale finite element models 
• Cracks create nonlinear dynamics (much harder to tackle) 
• Structural health monitoring (SHM) requires system 

information: sensors

Modeling and damage detection for complex structures
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Approach: 
• Apply component-based methods to assemble system-level 

reduced-order models (ROMs) of damaged structures 
• Employ linear approximations of nonlinear (cracked) structural 

dynamics
• Combine above into sensor placement / measurement point 

selection algorithm

Vehicle frame model (developed by Prof. Hulbert, Dr. Ma, Dr. Hahn of the Univ. of Michigan)



Reduced Order Models: Overview

� Dynamic analysis of invariant complex structures
� Projection by lower modes of the large-scale eigenvalue problem

Divide and Conquer

Component Mode Synthesis  
(CMS)
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Takes more than a day only for the 
dynamic structural analysis

(CMS)

� Dynamic analysis of damaged complex structures
� Projection by proper basis of the large-scale eigenvalue problem
� Proper basis can be defined for each damage type: cracks, dents and 

other structural variations of complex structures



System Level:
Vehicle Frame

� Assemble ROMs of system (e.g., frame) from finite element 
analyses of components and subcomponents 

� Efficiently predict vibration, loading, stress in critical regions

Finite Element Model 

Reduced Order Models: Substructuring
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Component Level:
Left Rail

Subcomponent Level:
Rail Sections,

Reinforcement Plates
Dynamic stress for 
component mode 
(left rail) Reinforcement

Plates

Finite Element Model 
of Frame



Selected fixed-interface 
normal nodes

Static modes: as many 
as interface DOF
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Reduced Order Models: CB-CMS
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normal nodesas interface DOF
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• Enable fast re-analysis
• Subcomponent dynamics evaluated 

at sampled parameter values

• System-level response expressed 
as function of parameter changes

- Global PROM (Parametric Reduced Order Models)

Reduced Order Models: Parametric Models (PROMs)

Nominal
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Multi-component
PROM (MC-PROM)

- Global PROM (Parametric Reduced Order Models)
� Balmès: Collected eigenvectors at sampled points in the 

parameter space
Problem: Overhead computational cost to get the modal 
matrix to project the FE model

- CMB-PROM (Component Mode Basis PROM)
� Zhang (2005): Collect fixed interface normal modes and 

global interface mode and project the FE model. 
Problem: Global analysis not substructural analysis

- Component PROM 
� Park (2008): Developed PROM for substructural analysis 

Problem: a single design component is tackled

Reinforcement plate 
thickness changes

Upper
Bound



Sφω δδ )(
2S MKf −=

jth healthy 
system mode

1S m
j jφ −− K f

Geometrical variations of the structure (dents)
� Lim (2004): used SMC for vibration of turbomachinery 

bladed disks for geometrical mistuning using SMC

jth Static Mode Effect of damage

by assuming external force

Reduced Order Models: Static Mode Compensation
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S
jjj φω δδ )(

2S MKf −=j jφ − K f

Damaged blade 
mode (34,563 Hz)

Quasi-static mode 
(centering frequency: 
34,000 Hz)

Basis shapeNormal mode 
(33,100.23 Hz)

Component Mode Synthesis 
with Static Mode Compensation 

(SMC-CMS)

Global structure analysis 
not component-level analysis



Cracks in the structure
� Crack surfaces open and close during 

vibration: nonlinear vibration
� Hybrid Frequency / Time Domain 

method (Poudou 2003)
� Bilinear Frequency Approximation 

(Shaw 1983): no mode information 
Free-ResponseForced-Response

Governing Equation

Reduced Order Models: Nonlinear Dynamics: Cracks
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penetration

NonlinearLinear

no penetration

Bilinear Frequency 
Approximation

Free-Response

Nonlinear Forced 
Response Analysis

Forced-Response

Resonant frequencies



Exact for nonlinear vibration frequency of a piecewise linear oscillator

Single DOF, piecewise linear oscillator

Reduced Order Models: Bilinear Frequency Approximation
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� Bilinear frequency approximation (BFA) for multiple DOF (Chati et al., 1997)
� BFA using general 3D finite element model (Saito et al., 2009)

Bilinear Frequency



Reduced Order Models: Bilinear Mode Approximation

Opening mode (I) Tearing mode (III)Sliding mode (II)
Crack modes
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� Manage boundary conditions on the crack: open and closed cases 
� Crack open: open boundary condition: DOF on crack surface are free 
� Crack closed: sliding boundary condition: free sliding inside crack surface 

� Mode approximation: shape of vibration is a linear combination of mode 
shapes for open and closed crack cases (dominant coherent structures) 

Bilinear Mode Approximation (BMA)



Reduced Order Models: Framework

Analysis Framework

Apply Craig-Bampton CMS (CB-CMS) for 
substructures which do not have any
damage or variability

Divide the global structure into 
substructures with or without damage

Assemble substructures for 
M&S of system-level response 

under various damage 
locations and crack lengths, 

uncertainties,
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Core technologies

Multi-Component PROM

SMC-CMS

CB-CMS

Bilinear Frequency and Mode Approximation

Apply  MC-PROM for the substructure with 
model variations (e.g. uncertainties) 

Apply BFA for cracked structure analysis

Efficient framework for
damage detection and for 

structural predictions

uncertainties,
design changes



( )2 1FEM FEM FEM FEM FEMu j uω γ− + + =M K F ( )2 1ROM ROM ROM ROM ROMq j qω γ− + + =M K F

DOF for FEM: 6150 DOF for ROM: 980

Apply ROM

Example: L-Shape Plate : Dents and Thickness Variations
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0.03γ =
u
q

(structural damping)

: physical coordinates

: modal coordinates

Thickness variations 



Results: L-Shape Plate: Forced Response
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Results: L-Shape Plate: Dents, Thickness Variations and Crack 
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L_rear

Reinforcement Frame

L_front

Engine Cradle

Cross-base

Results: Vehicle Frame : Dents and Thickness Variations
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Damage Scenario
Each reinforcement frame has thickness variation
Engine cradle has a dent

Engine Cradle

Substructure Thickness, case1 Thickness, case2

L_rear 3.0378 mm → 4.6268 mm 3.0378 mm → 5.5788 mm

L_front 3.0378 mm → 5.3838 mm 3.0378 mm → 4.0908 mm



3

3.5  

Healthy

Case 2 full order
3

3.5  

Healthy

Case 1 for ROM

Full order model ROM

System DOF 119808 2420

Initial Analysis time 60125.216 (sec.) 21955.959 (sec.)

Reanalysis time 60125.216 (sec.) 595.361 (sec.)

Response point : 3692672
3692672

Results: Vehicle Frame: Forced Response

Healthy

Case 2 full order
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Results: Vehicle Frame: Dents, Cracks and Thickness Variations

L_rear

Reinforcement Frame

L_front

Engine Cradle

Cross-base
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Engine Cradle

Crack length varying 
along the surface

11.11%
88.89%



Results: Vehicle Frame: Free Response
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Sensor Placement Algorithm for Cracked Structure

General sensor placement algorithm: EIDV
- Effective independence distribution vector (EIDV) [Kammer, 1991; Penny et al., 1994]
- From the real modal matrix, the EIDV algorithm is executed. 

Problem
- The augmented BL modal matrix         can be linearly dependentBLΦ

( ): M NBL ×Φ M : Number of candidate measurement DOF,  N : Number of mode 

Solution
- Use left singular vector U of         within the criteria to EIDV BLΦ
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Algorithm for modified EIDV with Left Singular Vector

- Calculate the mode shape for the healthy and damaged structures 
for open and closed cases in reduced order domain.  

- Construct the BL modal matrix for the healthy and damaged 
structures. 

- Find the sensitive mode shapes (and their frequencies) by using the 
generalized MAC matrix. 

- Make bilinear augmented modal matrix by the sensitive mode 
from the modified MAC matrix.

BLΦ
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from the modified MAC matrix.
- Obtain the left singular vector U of         and make         which is 
consist of left singular from U1 to Up based on the criteria

- Calculate Fisher information matrix given by 
- Calculate effective independence distribution vector (EIDV), the 
diagonal of 

.T
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Example: Cracked plate
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55 candidate 
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SVD ratio versus number of measurement locations
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Crack Surface

Apply modified EIDV using bilinear modal 
matrix assembled with sensitive modes 

Results: Measurement point selection
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Find the sensitive mode shapes by using 

55 candidate 
measurement points

15 selected
measurement points
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matrix assembled with sensitive modes 
to select measurement points

(15 points in this example) 

Find the sensitive mode shapes by using 
the generalized MAC matrix



Modeling and simulation of damaged structures
• Reduced-order models for dents, thickness changes, etc.
• Fast reanalysis methods
• Bilinear approximations for predicting nonlinear effects of cracks

Sensor placement (measurement point selection) method
• Bilinear mode approximation (BMA)
• EIDV-based algorithm for point selection

Summary
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• EIDV-based algorithm for point selection

Future work
• Applications to SHM of complex structures, joining/fastening
• Applications to design for reliability, observability
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